Copied to
clipboard

G = C62.131D4order 288 = 25·32

36th non-split extension by C62 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.131D4, (C6xD4):2S3, (C3xD4).41D6, (C3xC12).98D4, C32:7D8:9C2, (C2xC12).150D6, C32:9SD16:9C2, C3:5(D12:6C22), C12.59D6:5C2, C12.57(C3:D4), C32:23(C8:C22), C12.98(C22xS3), C12:S3:19C22, C12.58D6:12C2, (C6xC12).141C22, (C3xC12).102C23, C32:4C8:12C22, C4.16(C32:7D4), C32:4Q8:17C22, (D4xC32).26C22, C22.10(C32:7D4), (D4xC3xC6):6C2, D4.6(C2xC3:S3), (C2xD4):2(C3:S3), (C3xC6).279(C2xD4), C6.120(C2xC3:D4), C4.12(C22xC3:S3), C2.9(C2xC32:7D4), (C2xC6).99(C3:D4), (C2xC4).17(C2xC3:S3), SmallGroup(288,789)

Series: Derived Chief Lower central Upper central

C1C3xC12 — C62.131D4
C1C3C32C3xC6C3xC12C12:S3C12.59D6 — C62.131D4
C32C3xC6C3xC12 — C62.131D4
C1C2C2xC4C2xD4

Generators and relations for C62.131D4
 G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=dad=a-1b3, cbc-1=dbd=b-1, dcd=b3c3 >

Subgroups: 716 in 204 conjugacy classes, 65 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, C23, C32, Dic3, C12, D6, C2xC6, C2xC6, M4(2), D8, SD16, C2xD4, C4oD4, C3:S3, C3xC6, C3xC6, C3:C8, Dic6, C4xS3, D12, C3:D4, C2xC12, C3xD4, C3xD4, C22xC6, C8:C22, C3:Dic3, C3xC12, C2xC3:S3, C62, C62, C4.Dic3, D4:S3, D4.S3, C4oD12, C6xD4, C32:4C8, C32:4Q8, C4xC3:S3, C12:S3, C32:7D4, C6xC12, D4xC32, D4xC32, C2xC62, D12:6C22, C12.58D6, C32:7D8, C32:9SD16, C12.59D6, D4xC3xC6, C62.131D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:S3, C3:D4, C22xS3, C8:C22, C2xC3:S3, C2xC3:D4, C32:7D4, C22xC3:S3, D12:6C22, C2xC32:7D4, C62.131D4

Smallest permutation representation of C62.131D4
On 72 points
Generators in S72
(1 43 68 5 47 72)(2 69 48)(3 45 70 7 41 66)(4 71 42)(6 65 44)(8 67 46)(9 26 64)(10 61 27 14 57 31)(11 28 58)(12 63 29 16 59 25)(13 30 60)(15 32 62)(17 49 34)(18 39 50 22 35 54)(19 51 36)(20 33 52 24 37 56)(21 53 38)(23 55 40)
(1 18 25 5 22 29)(2 30 23 6 26 19)(3 20 27 7 24 31)(4 32 17 8 28 21)(9 36 48 13 40 44)(10 45 33 14 41 37)(11 38 42 15 34 46)(12 47 35 16 43 39)(49 67 58 53 71 62)(50 63 72 54 59 68)(51 69 60 55 65 64)(52 57 66 56 61 70)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 8)(2 7)(3 6)(4 5)(9 14)(10 13)(11 12)(15 16)(17 18)(19 24)(20 23)(21 22)(25 32)(26 31)(27 30)(28 29)(33 36)(34 35)(37 40)(38 39)(41 44)(42 43)(45 48)(46 47)(49 50)(51 56)(52 55)(53 54)(57 60)(58 59)(61 64)(62 63)(65 70)(66 69)(67 68)(71 72)

G:=sub<Sym(72)| (1,43,68,5,47,72)(2,69,48)(3,45,70,7,41,66)(4,71,42)(6,65,44)(8,67,46)(9,26,64)(10,61,27,14,57,31)(11,28,58)(12,63,29,16,59,25)(13,30,60)(15,32,62)(17,49,34)(18,39,50,22,35,54)(19,51,36)(20,33,52,24,37,56)(21,53,38)(23,55,40), (1,18,25,5,22,29)(2,30,23,6,26,19)(3,20,27,7,24,31)(4,32,17,8,28,21)(9,36,48,13,40,44)(10,45,33,14,41,37)(11,38,42,15,34,46)(12,47,35,16,43,39)(49,67,58,53,71,62)(50,63,72,54,59,68)(51,69,60,55,65,64)(52,57,66,56,61,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,18)(19,24)(20,23)(21,22)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)(37,40)(38,39)(41,44)(42,43)(45,48)(46,47)(49,50)(51,56)(52,55)(53,54)(57,60)(58,59)(61,64)(62,63)(65,70)(66,69)(67,68)(71,72)>;

G:=Group( (1,43,68,5,47,72)(2,69,48)(3,45,70,7,41,66)(4,71,42)(6,65,44)(8,67,46)(9,26,64)(10,61,27,14,57,31)(11,28,58)(12,63,29,16,59,25)(13,30,60)(15,32,62)(17,49,34)(18,39,50,22,35,54)(19,51,36)(20,33,52,24,37,56)(21,53,38)(23,55,40), (1,18,25,5,22,29)(2,30,23,6,26,19)(3,20,27,7,24,31)(4,32,17,8,28,21)(9,36,48,13,40,44)(10,45,33,14,41,37)(11,38,42,15,34,46)(12,47,35,16,43,39)(49,67,58,53,71,62)(50,63,72,54,59,68)(51,69,60,55,65,64)(52,57,66,56,61,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,18)(19,24)(20,23)(21,22)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)(37,40)(38,39)(41,44)(42,43)(45,48)(46,47)(49,50)(51,56)(52,55)(53,54)(57,60)(58,59)(61,64)(62,63)(65,70)(66,69)(67,68)(71,72) );

G=PermutationGroup([[(1,43,68,5,47,72),(2,69,48),(3,45,70,7,41,66),(4,71,42),(6,65,44),(8,67,46),(9,26,64),(10,61,27,14,57,31),(11,28,58),(12,63,29,16,59,25),(13,30,60),(15,32,62),(17,49,34),(18,39,50,22,35,54),(19,51,36),(20,33,52,24,37,56),(21,53,38),(23,55,40)], [(1,18,25,5,22,29),(2,30,23,6,26,19),(3,20,27,7,24,31),(4,32,17,8,28,21),(9,36,48,13,40,44),(10,45,33,14,41,37),(11,38,42,15,34,46),(12,47,35,16,43,39),(49,67,58,53,71,62),(50,63,72,54,59,68),(51,69,60,55,65,64),(52,57,66,56,61,70)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,8),(2,7),(3,6),(4,5),(9,14),(10,13),(11,12),(15,16),(17,18),(19,24),(20,23),(21,22),(25,32),(26,31),(27,30),(28,29),(33,36),(34,35),(37,40),(38,39),(41,44),(42,43),(45,48),(46,47),(49,50),(51,56),(52,55),(53,54),(57,60),(58,59),(61,64),(62,63),(65,70),(66,69),(67,68),(71,72)]])

51 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C6A···6L6M···6AB8A8B12A···12H
order12222233334446···66···68812···12
size1124436222222362···24···436364···4

51 irreducible representations

dim111111222222244
type++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6C3:D4C3:D4C8:C22D12:6C22
kernelC62.131D4C12.58D6C32:7D8C32:9SD16C12.59D6D4xC3xC6C6xD4C3xC12C62C2xC12C3xD4C12C2xC6C32C3
# reps112211411488818

Matrix representation of C62.131D4 in GL6(F73)

900000
0650000
0065000
0006500
0000640
0000064
,
6400000
080000
0072000
0007200
0000720
0000072
,
0720000
100000
000010
00007272
001200
0007200
,
0720000
7200000
000010
000001
001000
000100

G:=sub<GL(6,GF(73))| [9,0,0,0,0,0,0,65,0,0,0,0,0,0,65,0,0,0,0,0,0,65,0,0,0,0,0,0,64,0,0,0,0,0,0,64],[64,0,0,0,0,0,0,8,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,1,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,72,0,0,1,72,0,0,0,0,0,72,0,0],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

C62.131D4 in GAP, Magma, Sage, TeX

C_6^2._{131}D_4
% in TeX

G:=Group("C6^2.131D4");
// GroupNames label

G:=SmallGroup(288,789);
// by ID

G=gap.SmallGroup(288,789);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,219,675,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^3,c*b*c^-1=d*b*d=b^-1,d*c*d=b^3*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<